Real time regulation of efficient driving of high speed trains based on a genetic algorithm and a fuzzy model of manual driving
نویسندگان
چکیده
Nowadays one of the main priorities for railways administrations and operators is the reduction of energy consumption, due to its impact on CO2 emissions and economic costs. This is especially important on high speed lines, in expansion in many countries, given that very high levels of consumption are involved. Energy saving strategies focused on traffic operation can be applied in the short term with low levels of investment, in particular ecodriving, timetable design and the on line regulation of trains. However approaches in the literature to minimize energy do not normally consider specific models for manual driving in high speed lines and the commercial punctuality constraints of this type of services, and do not take into account the uncertainty associated with manual driving. The aim of this paper is the on line regulation of high speed trains recalculating the energy efficient manual driving to be executed by the driver when significant delays arise. The manual driving is modeled by means of fuzzy parameters: the speed regulation and the response time of the driver when a new driving command has to be applied. The punctuality requirement of the railway operator is represented as a necessity fuzzy measure of punctual arrival at stations. The proposed method for the on line recalculation of efficient driving is a Genetic Algorithm with fuzzy parameters based on an accurate simulation of the train motion. This algorithm is applied on a real Spanish high speed line to assess the energy savings provided by the efficient regulation algorithm compared to the typical driving style that is applied when a train has to get back on schedule after a delay.
منابع مشابه
A real-time recursive dynamic model for vehicle driving simulators
This paper presents the Real-Time Recursive Dynamics (RTRD) model that is developed for driving simulators. The model could be implemented in the Driving Simulator. The RTRD can also be used for off-line high-speed dynamics analysis, compared with commercial multibody dynamics codes, to speed up mechanical design process. An overview of RTRD is presented in the paper. Basic models for specific ...
متن کاملDesign, Development and Test of a Practical Train Energy Optimization using GA-PSO Algorithm
One of the strategies for reduction of energy consumption in railway systems is to execute efficient driving by presenting optimized speed profile considering running time, energy consumption and practical constraints. In this paper, by using real route data, an approach based on combination of Genetic and Particle swarm (GA-PSO) algorithms in order to optimize the fuel consumption is provided....
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملLocomotive assignment problem with train precedence using genetic algorithm
This paper aims to study the locomotive assignment problem which is very important for railway companies, in view of high cost of operating locomotives. This problem is to determine the minimum cost assignment of homogeneous locomotives located in some central depots to a set of pre-scheduled trains in order to provide sufficient power to pull the trains from their origins to their destinations...
متن کاملA New Model of Car Following Behavior Based on Lane Change Effects Using Anticipation and Evaluation Idea
This paper aims to investigate a new and intricate behavior of immediate follower during the lane change of leader vehicle. Accordingly, the mentioned situation is a transient state in car following behavior during which the follower vehicle considerably deviates from conventional car following models for a limited time, which is a complex state including lateral and longitudinal movement simul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 29 شماره
صفحات -
تاریخ انتشار 2014